MODULE 17 INTRODUCTION TO FORMAL DESIGN

CREDIT POINTS 7.5

STATUS Core

ASSESSMENT Continuous Assessment 50%
Examination 50%

TOTAL CONTACT HOURS: 60

Lecture: 24

Practical: 36

Tutorial:

Other:

TOTAL STUDENT EFFORT: 150

Aims

This module aims to understand and apply those branches of logic necessary to develop correct
programs; to develop an understanding of the mathematics required to develop programs from initial
specifications through to implementation by using formal techniques; how to prove the correctness of a
given program based on its pre and post conditions; apply a formal semantic model to the derivation of
programs; methods necessary to derive correct programs given a formal specification in terms of

pre/post conditions.

Learning Outcomes

Upon successful completion of this module, you should be able to:

PwnNPE

use assertions to prove the axiomatic semantics of a simple programming language

use pre/post conditions to prove the correctness of simple programs

prove the correctness of programs using loops, loops within loops and sequential loops
derive programs from initial specifications using different methods of construction based on

axiomatic semantics

Indicative Content




Topic

Description

Introduction

Explain the need for formal methods in the construction of
programs;

Examples of programs with bugs;
Writing assertions over sequences;

The use of predicates to describe states in programs.

Axiomatic semantics of a
guarded command language

Predicates as assertions in programming languages;

The role of assertions in the execution of programs. The
semantics {P} S {Q};

Definition of skip; assignment; if .. fi; do .. od;

Definition of an invariant and its use in proving the correctness
of loops;

Proving correctness using definitions;

Proving correctness of complete programs using assertions and
axiomatic semantics;

Formal derivation of
programs

Writing specifications of problems using pre conditions and post
conditions;

Formally deriving programs from initial specifications to
complete program code;

Method 1: Problems of the form

{P} do b— S1{P}od {P AQ}
Method 2: Replacing a constant with a variable;
Problem domains involving loops within loops;
Method 3: Strengthening an invariant;
Invariant diagrams;

Applying formal approach to searching and sorting;




Searching for optimal solutions — O(logN) and O(N) solutions
to computational problems.




